
Postgres is an open-source relational database management system.

Major Upgrade
Renaming a Database
Renaming a Role (User)

PostgreSQL

How to Upgrade a PostgreSQL database inside a Docker Container: A Step-by-Step Guide

Before upgrading, it's essential to back up your database to avoid data loss.

1. Update compose.yaml to Add Volumes:

In your compose.yaml file, add the necessary volumes for data and backups:

2. Shutdown All Containers Except the Database:

Stop all your stack's containers except for the PostgreSQL container.

3. Dump the Database into the Backup Directory:

Run the following command to export all SQL tables into a dump file:

1. Stop the Database Container:

Bring down the PostgreSQL container:

2. Delete the Existing data Volume:

To prepare for the upgrade, remove the current data volume associated with PostgreSQL.

Major Upgrade

Step 1: Backup the Database

postgres:

 ...

 volumes:

 - data:/var/lib/postgresql/data

 - backup:/backup

 ...

docker exec -it <DB_CONTAINER_NAME> pg_dumpall -U <POSTGRES_USER> > /backup/dump.sql

Step 2: Clean Up the Existing Stack

docker compose down <DB_CONTAINER_NAME>

1. Update the PostgreSQL Version:

In the compose.yaml file, change the PostgreSQL image to the new version.

2. Bring Up the Updated PostgreSQL Container:

Run the following command to start the new version:

1. Stop All Stack Containers:

Ensure all containers are stopped to avoid any conflicts.

2. Delete Data Files in the Volume:

Navigate to the PostgreSQL volume and remove the data files located in
/var/lib/docker/<DB_CONTAINER_NAME>/_data .

1. Start the Database Container:

Power on the PostgreSQL container.

2. Import the Data from Backup:

Use the following command to restore the dumped SQL data into the new PostgreSQL container:

Once the database has been restored, you can start all your other containers again.

And that's it! �� You've successfully upgraded PostgreSQL in your Docker environment.

Step 3: Upgrade PostgreSQL

docker compose up -d

Step 4: Clear the New Data Volume

Step 5: Restore the Database

docker exec -it <DB_CONTAINER_NAME> psql -U <POSTGRES_USER> -d <POSTGRES_DATABASE_NAME> <

/backup/dump.sql

Final Step: Bring the Stack Back Online

Happy me! ��

Renaming a PostgreSQL Database Inside a Docker Container: Step-by-Step Guide

To start, connect to the PostgreSQL server within the Docker container by running the following
command:

⛔ ️ When you connect to the PostgreSQL server, you’re likely accessing the database you want to
rename. However, PostgreSQL doesn’t allow renaming a database while you’re connected to it.

✅ The Fix: Connect to a Different Database

To proceed, list all available databases on the server, then connect to another one:

Now you can rename your database using the ALTER DATABASE...RENAME TO command:

Happy me! ��

Renaming a Database

Step 1: Connect to the PostgreSQL
Server

docker exec -it <POSTGRESQL_CONTAINER_NAME> psql -U <POSTGRESQL_USERNAME>

Step 2: Switch to a Different Database

\l

\c <ANOTHER_DB_NAME>

Step 3: Rename the Database

ALTER DATABASE <OLD_DB_NAME> RENAME TO <NEW_DB_NAME>;

Renaming a PostgreSQL Role Inside a Docker Container: Step-by-Step Guide

To start, connect to the PostgreSQL server within the Docker container by running the following
command:

⛔ ️ When you connect to the PostgreSQL server, you’re likely accessing the database with the user
you want to rename. However, PostgreSQL doesn’t allow renaming a user while you’re connected
to it.

✅ The Fix: Create and Connect with a Different Role

To proceed, enter the following command:

Disconnect from the server with the \q command then reconnect with the <NEW_USER> created:

Now you can rename your role using the ALTER USER...RENAME TO command:

Happy me! ��

Renaming a Role (User)

Step 1: Connect to the PostgreSQL
Server

docker exec -it <POSTGRESQL_CONTAINER_NAME> psql -U <POSTGRESQL_USERNAME>

Step 2: Switch to a Different Role

CREATE ROLE <NEW_USER> SUPERUSER LOGIN PASSWORD '<USER_PASSWORD>';

docker exec -it <POSTGRESQL_CONTAINER_NAME> psql -U <NEW_USERNAME>

Step 3: Rename the Role

ALTER USER <OLD_USER_NAME> RENAME TO <NEW_USER_NAME>;

